As a topic of study, semiconductor devices offer a unique challenge due to the complex mathematics involved. In this course, we take a more intuitive approach to exploring the underlying concepts. Eschewing mathematics, we use engaging animations to help you visualize the working principles of many common semiconductor devices.
Whether you are completely new to the subject or an experienced engineer, this course will give you a different perspective and a new way to look at the behaviors of semiconductor devices.
Reducing the reliance of equations does not mean the depth of the material is sacrificed. In fact, the course provides even more in-depth explanations of key concepts. We shift the focus from quantitatively evaluating the behavior of semiconductor devices to intuitively visualizing the semiconductor device actions.
Following the approach from Part I, we expand the understanding from PN junction diodes and BJTs to MOS capacitors, charge coupled devices and MOSFETs. In addition to describing the theory of MOSFETs, the course covers some more recent development in non-traditional nano-CMOS transistors. Besides covering the existing technologies, the course will also enable you to project the development of the industry in the near future.
Week 1: MOS capacitor charges and capacitances
Introduction to the MOS capacitor structures, its charge and capacitance characteristics
Week 2: Charge coupled device, CMOS active-pixel sensor and MOS capacitor with a source
The operation principle of charge coupled devices, CMOS active pixel sensor for digital camera applications. The effect of adding a source to the MOS capacitor.
Week 3: Classical MOSFET I-V characteristics
Derivation of the classical MOSFET equations and the subthreshold characteristics.
Week 4: Mobility degradation and carrier velocity saturation
Correction to the classical pinchoff model by including the effect of mobility degradation and carrier velocity saturation.
Week 5: CMOS device scaling and short channel MOSFET
The effect of transistor scaling, short channel effects and the problems of small transistor design.
Week 6: Non-traditional nano-CMOS transistors
Introduction to the state-of-the-art transistors structure including SOI technology, FinFET, multi-gate MOSFET, tunnelling transistor and transistors based on 2-D materials.
Week 7: Final Exam
Help others make their choice. Be the first one to leave a review